1: サバトラ(愛知県) 2013/01/07(月) 16:45:01.69 ID:zoroM1ez0● BE:818114843-PLT(12100) ポイント特典
「絶対零度以下の物質」作成に成功 ミュンヘン大学(LMU)の研究者らが、「絶対零度より低温」の量子気体をつくり出すことに成功した。
この超低温の物質は、レーザーと磁場を使ってカリウム原子を格子状に配列したものだ。論文は1月3日付けで『Science』誌に掲載された。
『Nature』誌の記事によると、研究チームは磁場を操作することで、カリウム原子を互いに反発しあうのではなく互いに引きつけあわせ、
絶対零度以下における気体の特性を明らかにすることに成功したという。
「原子は、その最も安定した最も低エネルギーな状態から、可能な限り最も高エネルギーな状態へと瞬時に転換される」と、ミュンヘン大学の物理学者、
ウルリッヒ・シュナイダーは『Nature』誌の取材に対して述べている。「谷間を歩いていたら、突然山頂に立っていることに気がついたような感じだ」
絶対零度は従来、温度の理論上の下限と考えられていた。温度は物質粒子の平均エネルギー量と相関しているため、絶対零度においては粒子のエネルギーもゼロだと考えられていた。絶対零度を下回ると、物質はさまざまな奇妙な特性を示し始める。絶対零度を10億分の数ケルビン下回る温度で比較的安定した物質を生成できれば、この奇妙な状態の研究と解明が進み、うまくいけばほかの革新にもつながる可能性がある。
画像
詳細 WIRED 2013/1/4 Quantum gas temperature drops below absolute zero
http://www.wired.co.uk/news/archive/2013-01/04/quantum-gas-below-absolute-zero ミュンヘン大学とは、ドイツ・バイエルン州ミュンヘンにある州立大学。
トゥーレ協会の一員で、ナチ党にも深く関わっていた地政学者、カール・ハウスホーファーがその教鞭をとったこともある。
トゥーレ協会は、1918年にミュンヘンで結成された秘密結社。極端な民族主義・反ユダヤ主義を標榜して第一次世界大戦後の
バイエルン州で勢力を拡大し、国家社会主義ドイツ労働者党(ナチ党)の母体の一つともなった。
http://ja.wikipedia.org/wiki/%E3%83%88%E3%82%A5%E3%83%BC%E3%83%AC%E5%8D%94%E4%BC%9A 2: ボルネオヤマネコ(やわらか銀行) 2013/01/07(月) 16:46:01.77 ID:tnO7s8cl0
なるほど全く分からない
4: キジ白(庭) 2013/01/07(月) 16:46:26.26 ID:ZD405cycT
道理で2月並みに寒い
8: スノーシュー(福井県) 2013/01/07(月) 16:47:29.40 ID:NHhggDhY0
どうやって測ったんだ
7: ヤマネコ(内モンゴル自治区) 2013/01/07(月) 16:47:24.01 ID:miHd76oqO
で、具体的になんの役に立つんだよ?
9: ノルウェージャンフォレストキャット (三重県) 2013/01/07(月) 16:47:45.02 ID:zEAKlV+q0
ショッカーの改造人間トドギラーのブレス攻撃はマイナス300度
12: トンキニーズ(新疆ウイグル自治区) 2013/01/07(月) 16:48:45.18 ID:46HMlb1X0
その温度が(新しい)絶対零度なんじゃないの?
14: スナドリネコ(東京都) 2013/01/07(月) 16:49:03.50 ID:L85ifYkd0
>「谷間を歩いていたら、突然山頂に立っていることに気がついたような感じだ」
まったく分からん
26: アメリカンショートヘア(東京都) 2013/01/07(月) 16:52:01.51 ID:wFK/gbU+0
>>14
(胸の)谷間を歩いていたら突然山頂(ちんこ)があったってことだろ
44: ハバナブラウン(千葉県) 2013/01/07(月) 16:58:32.08 ID:3zhxIWAh0
>>26
頭おかしいってよく言われるだろ
25: クロアシネコ(鳥取県) 2013/01/07(月) 16:51:59.95 ID:FkQ8/Pw00
さすがナチスの科学力
21: ラグドール(チベット自治区) 2013/01/07(月) 16:51:25.85 ID:4iZdyVNT0
なんでドイツって昔からマッドサイエンティストの宝庫なの?
ソーセージにそういう作用でもあんの?
24: イエネコ(九州地方) 2013/01/07(月) 16:51:59.02 ID:2qC0oJFtO
ラノベや漫画やアニメで「絶対零度以下」のなんちゃらかんちゃらが量産されるフラグか
23: マンチカン(神奈川県) 2013/01/07(月) 16:51:35.01 ID:pz79d7VeP
じゃー、絶対零度という言葉を改めないとな。
30: サバトラ(千葉県) 2013/01/07(月) 16:52:50.11 ID:HcUtzQxZ0
例外もあるって感じで終わりそう
29: ラグドール(神奈川県) 2013/01/07(月) 16:52:12.45 ID:FniXJXWx0
基礎単位が変わる
ってほどでもなさそうだネ
34: ラグドール(dion軍) 2013/01/07(月) 16:53:48.31 ID:59gsgjNa0
ケルビンと他の尺度の関係が変わるんだろ
っていっても10億分の数ケルビンじゃ誤差みてえなもんだな
40: サイベリアン(大阪府) 2013/01/07(月) 16:57:14.96 ID:QdGZXAKL0
「止まるより遅い」みたいなもんだろ?
43: 白黒(やわらか銀行) 2013/01/07(月) 16:58:20.48 ID:QnCkGgURP
絶対に負けられない戦いに負けたようなもんか?
48: ギコ(岩手県) 2013/01/07(月) 16:59:25.74 ID:pZxV1Wvg0
ドイツ中二病自重しろ
51: サバトラ(愛知県) 2013/01/07(月) 17:00:03.41 ID:zoroM1ez0 BE:3817867687-PLT(12100)
>>1
<参考>
1.41679*10^32ケルビン = ビッグバン(宇宙の始まり、超物質)
10^13 ケルビン = ビッグバン100μ秒後の温度
10^10 ケルビン = 超新星爆発の中心温度
10^7 ケルビン = 太陽核の温度
10^5 ケルビン = 広島型原爆の爆発直後(U235 50kg即発臨界)
1900 ケルビン = 1,600 ℃ バーナーの炎
373.15 ケルビン= 100 ℃ 水の沸点
310 ケルビン = 35-37 ℃ 人間の体温
273.15 ケルビン= 0 ℃ 水の融点
0 ケルビン = -237.15℃ 絶対零度
-X ケルビン = ドイツが物理限界を突破した-238℃~の世界
56: アフリカゴールデンキャット(やわらか銀行) 2013/01/07(月) 17:01:53.24 ID:bkjmqkF40
ところで何で低温には限界があるのに高温には無いのん?
59: サバトラ(愛知県) 2013/01/07(月) 17:03:16.63 ID:zoroM1ez0 BE:1022643735-PLT(12100)
>>56
>ところで何で低温には限界があるのに高温には無いのん?
高温にも限界があるんだぜ。。。
<参考>
1.41679*10^32ケルビン = ビッグバン(宇宙の始まり、超物質) ← この世の全ての熱・質量が集約してる状態
10^13 ケルビン = ビッグバン100μ秒後の温度
10^10 ケルビン = 超新星爆発の中心温度
10^7 ケルビン = 太陽核の温度
10^5 ケルビン = 広島型原爆の爆発直後(U235 50kg即発臨界)
1900 ケルビン = 1,600 ℃ バーナーの炎
373.15 ケルビン= 100 ℃ 水の沸点
310 ケルビン = 35-37 ℃ 人間の体温
273.15 ケルビン= 0 ℃ 水の融点
0 ケルビン = -237.15℃ 絶対零度
-X ケルビン = ドイツが物理限界を突破した-238℃~の世界
64: ペルシャ(広島県) 2013/01/07(月) 17:04:10.02 ID:foxA6/Su0
>>56
温度はエネルギーに直結するから運動しなくなった時が0Kと仮定してたはずだった今までは
57: ペルシャ(広島県) 2013/01/07(月) 17:02:23.61 ID:foxA6/Su0
まさに宇宙の法則が乱れる
63: ノルウェージャンフォレストキャット (福井県) 2013/01/07(月) 17:04:07.04 ID:PWumRR410
マイナス一兆二千万度で時間が逆流する
らしい
65: イエネコ(中国地方) 2013/01/07(月) 17:04:28.88 ID:xa+3ST990
絶対零度「絶対外してください…」
68: バリニーズ(大阪府) 2013/01/07(月) 17:04:49.38 ID:k9FsEqkA0
なんとなくライトノベルの題名っぽい
70: ユキヒョウ(宮城県) 2013/01/07(月) 17:05:03.35 ID:Kt1YHhHs0
バナナで釘が打てるどころの騒ぎじゃないな
73: バーマン(岐阜県) 2013/01/07(月) 17:06:58.49 ID:bkP7FZx+0
少年漫画の厨設定がまた一段進化するな
67: サバトラ(神奈川県) 2013/01/07(月) 17:04:49.22 ID:PyXlI13d0
これはすごいな
何がすごいのか解らないくらいすごい
1001 以下、おすすめリンクをお送りします 2012/01/01(日) 12:00:00.00 ID:BotTiSOkU
厳選記事!!
ニュース
VIP
アニメ・漫画
エンタメ
スポーツ
新着記事一覧
画面右下のツイートボタンの方が使いやすいです…
- 関連記事
-
粒子が完全停止しても量子の揺らぎがあるから絶対零度もあり得ないはずだったのが限界突破したのかよwwwうぇwww
ソース
A temperature below absolute zero
Atoms at negative absolute temperature are the hottest systems in the world
January 04, 2013
What is normal to most people in winter has so far been impossible in physics: a minus temperature. On the Celsius scale minus temperatures are only surprising in summer. On the absolute temperature scale, which is used by physicists and is also called the Kelvin scale, it is not possible to go below zero – at least not in the sense of getting colder than zero kelvin. According to the physical meaning of temperature, the temperature of a gas is determined by the chaotic movement of its particles – the colder the gas, the slower the particles. At zero kelvin (minus 273 degrees Celsius) the particles stop moving and all disorder disappears. Thus, nothing can be colder than absolute zero on the Kelvin scale. Physicists at the Ludwig-Maximilians University Munich and the Max Planck Institute of Quantum Optics in Garching have now created an atomic gas in the laboratory that nonetheless has negative Kelvin values. These negative absolute temperatures have several apparently absurd consequences: although the atoms in the gas attract each other and give rise to a negative pressure, the gas does not collapse – a behaviour that is also postulated for dark energy in cosmology. Supposedly impossible heat engines such as a combustion engine with a thermodynamic efficiency of over 100% can also be realised with the help of negative absolute temperatures.
Zoom Image
Hot minus temperatures: At a negative absolute temperature the energy distribution of particles inverts in comparison to... [more]
© LMU and MPG Munich
In order to bring water to the boil, energy needs to be added. As the water heats up, the water molecules increase their kinetic energy over time and move faster and faster on average. Yet, the individual molecules possess different kinetic energies – from very slow to very fast. Low-energy states are more likely than high-energy states, i.e. only a few particles move really fast. In physics, this distribution is called the Boltzmann distribution. Physicists working with Ulrich Schneider and Immanuel Bloch have now realised a gas in which this distribution is precisely inverted: many particles possess high energies and only a few have low energies. This inversion of the energy distribution means that the particles have assumed a negative absolute temperature.
“The inverted Boltzmann distribution is the hallmark of negative absolute temperature; and this is what we have achieved,” says Ulrich Schneider. “Yet the gas is not colder than zero kelvin, but hotter,” as the physicist explains: “It is even hotter than at any positive temperature – the temperature scale simply does not end at infinity, but jumps to negative values instead.”
A negative temperature can only be achieved with an upper limit for the energy
The meaning of a negative absolute temperature can best be illustrated with rolling spheres in a hilly landscape, where the valleys stand for a low potential energy and the hills for a high one. The faster the spheres move, the higher their kinetic energy as well: if one starts at positive temperatures and increases the total energy of the spheres by heating them up, the spheres will increasingly spread into regions of high energy. If it were possible to heat the spheres to infinite temperature, there would be an equal probability of finding them at any point in the landscape, irrespective of the potential energy. If one could now add even more energy and thereby heat the spheres even further, they would preferably gather at high-energy states and would be even hotter than at infinite temperature. The Boltzmann distribution would be inverted, and the temperature therefore negative. At first sight it may sound strange that a negative absolute temperature is hotter than a positive one. This is simply a consequence of the historic definition of absolute temperature, however; if it were defined differently, this apparent contradiction would not exist.
Zoom Image
Temperature as a game of marbles: The Boltzmann distribution states how many particles have which energy, and can be... [more]
© LMU and MPG Munich
This inversion of the population of energy states is not possible in water or any other natural system as the system would need to absorb an infinite amount of energy – an impossible feat! However, if the particles possess an upper limit for their energy, such as the top of the hill in the potential energy landscape, the situation will be completely different. The researchers in Immanuel Bloch’s and Ulrich Schneider’s research group have now realised such a system of an atomic gas with an upper energy limit in their laboratory, following theoretical proposals by Allard Mosk and Achim Rosch.
In their experiment, the scientists first cool around a hundred thousand atoms in a vacuum chamber to a positive temperature of a few billionths of a Kelvin and capture them in optical traps made of laser beams. The surrounding ultrahigh vacuum guarantees that the atoms are perfectly thermally insulated from the environment. The laser beams create a so-called optical lattice, in which the atoms are arranged regularly at lattice sites. In this lattice, the atoms can still move from site to site via the tunnel effect, yet their kinetic energy has an upper limit and therefore possesses the required upper energy limit. Temperature, however, relates not only to kinetic energy, but to the total energy of the particles, which in this case includes interaction and potential energy. The system of the Munich and Garching researchers also sets a limit to both of these. The physicists then take the atoms to this upper boundary of the total energy – thus realising a negative temperature, at minus a few billionths of a kelvin.
At negative temperatures an engine can do more work
If spheres possess a positive temperature and lie in a valley at minimum potential energy, this state is obviously stable – this is nature as we know it. If the spheres are located on top of a hill at maximum potential energy, they will usually roll down and thereby convert their potential energy into kinetic energy. “If the spheres are at a negative temperature, however, their kinetic energy will already be so large that it cannot increase further,” explains Simon Braun, a doctoral student in the research group. “The spheres thus cannot roll down, and they stay on top of the hill. The energy limit therefore renders the system stable!” The negative temperature state in their experiment is indeed just as stable as a positive temperature state. “We have thus created the first negative absolute temperature state for moving particles,” adds Braun.
Matter at negative absolute temperature has a whole range of astounding consequences: with its help, one could create heat engines such as combustion engines with an efficiency of more than 100%. This does not mean, however, that the law of energy conservation is violated. Instead, the engine could not only absorb energy from the hotter medium, and thus do work, but, in contrast to the usual case, from the colder medium as well.
At purely positive temperatures, the colder medium inevitably heats up in contrast, therefore absorbing a portion of the energy of the hot medium and thereby limits the efficiency. If the hot medium has a negative temperature, it is possible to absorb energy from both media simultaneously. The work performed by the engine is therefore greater than the energy taken from the hotter medium alone – the efficiency is over 100 percent.
The achievement of the Munich physicists could additionally be interesting for cosmology, since the thermodynamic behaviour of negative temperature exhibits parallels to so-called dark energy. Cosmologists postulate dark energy as the elusive force that accelerates the expansion of the universe, although the cosmos should in fact contract because of the gravitational attraction between all masses. There is a similar phenomenon in the atomic cloud in the Munich laboratory: the experiment relies upon the fact that the atoms in the gas do not repel each other as in a usual gas, but instead interact attractively. This means that the atoms exert a negative instead of a positive pressure. As a consequence, the atom cloud wants to contract and should really collapse – just as would be expected for the universe under the effect of gravity. But because of its negative temperature this does not happen. The gas is saved from collapse just like the universe.
CM/PH